Wavelet-Based Time-Frequency Representations for Automatic Recognition of Emotions from Speech

نویسندگان

  • Juan Camilo Vásquez-Correa
  • Tomas Arias-Vergara
  • Juan R. Orozco-Arroyave
  • Jesus Francisco Vargas Bonilla
  • Elmar Nöth
چکیده

The interest in emotion recognition from speech has increased in the last decade. Emotion recognition can improve the quality of services and the quality of life of people. One of the main problems in emotion recognition from speech is to find suitable features to represent the phenomenon. This paper proposes new features based on the energy content of wavelet based time-frequency (TF) representations to model emotional speech. Three TF representations are considered: (1) the continuous wavelet transform, (2) the bionic wavelet transform, and (3) the synchro–squeezed wavelet transform. The classification is performed using GMM supervectors. Different classification problems are addressed, including high vs. low arousal, positive vs. negative valence, and multiple emotions. The results indicate that the proposed features are useful to classify high vs. low arousal emotions, and that the features derived from the synchro–squeezed wavelet transform are more suitable than the other two approaches to model emotional speech.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Speech Recognition using Wavelet Packet Features

In view of the growing use of automatic speech recognition in the modern society, we study various alternative representations of the speech signal that have the potential to contribute to the improvement of the recognition performance. Specifically, the main targets of the present article are to overview and evaluate the practical importance of some recently proposed, and thus less studied, wa...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanis...

متن کامل

Various Speech Processing Techniques For Speech Compression And Recognition

Years of extensive research in the field of speech processing for compression and recognition in the last five decades, resulted in a severe competition among the various methods and paradigms introduced. In this paper we include the different representations of speech in the time-frequency and time-scale domains for the purpose of compression and recognition. The examination of these represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016